Classification
All classifiers implement IClassificationModel and operate directly on Matrix and Vector primitives.
📊 Logistic Regression
Class: Logistic
Hyperparameters:
LearningRateMaxIterationsFitInterceptRegularizationStrengthTolerance
🌳 Decision Tree
Class: DecisionTree
Hyperparameters:
MaxDepthMinSamplesSplit
🌲 Random Forest
Class: RandomForest
Hyperparameters:
NumTreesMaxDepthMinSamplesSplit
👥 K-Nearest Neighbors
Class: KNearestNeighbors
Hyperparameters:
K
🎲 Naive Bayes
Class: NaiveBayes
Hyperparameters: (No tunable hyperparameters)
➡️ Support Vector Classifier (Linear)
Class: LinearSVC
Hyperparameters:
C(regularization strength)LearningRateEpochs
🎯 Support Vector Classifier (Kernel)
Class: KernelSVC
Hyperparameters:
CKernel(RBF, Polynomial)LearningRateEpochsGammaDegree(for polynomial kernel)
🧠 Multilayer Perceptron (Classifier)
Class: MLPClassifier
Hyperparameters:
HiddenLayers(e.g.64,64,32)LearningRateEpochsActivation(ReLU, Tanh, Sigmoid)